Mitigating errors in surface temperature forecasts using approximate radiation updates
نویسندگان
چکیده
Due to computational expense, the radiation schemes in many weather and climate models are called infrequently in time and/or on a reduced spatial grid. The former can lead to a lag in the diurnal cycle of surface temperature, while the latter can lead to large surface temperature errors at coastal land points due to surface fluxes computed over the ocean being used where the skin temperature and surface albedo are very different. This paper describes a computationally efficient solution to these problems, in which the surface longwave and shortwave fluxes are updated every time step and grid point according to the local skin temperature and albedo. In order that energy is conserved, it is necessary to compute the change to the net flux profile consistent with the changed surface fluxes. The longwave radiation scheme has been modified to compute also the rate of change of the profile of upwelling longwave flux with respect to the value at the surface. Then at each grid point and time step, the upwelling flux and heatingrate profiles are updated using the new value of skin temperature. The computational cost of performing approximate radiation updates in the ECMWF model is only 2% of the cost of the full radiation scheme, so increases the overall cost of the model by only of order 0.2%. Testing the new scheme by running daily 5 day forecasts over an 8 month period reveals significant improvement in 2 m temperature forecasts at coastal stations compared to observations.
منابع مشابه
Improvement of Cloud Radiative Forcing and Its Impact on Weather Forecasts
The global numerical weather prediction model GRAPES at the National Meteorological Center of the China Meteorological Administration is subject to substantial systematic discrepancies from satellite-retrieved cloud cover, cloud water contents, and radiative fluxes. In particular, GRAPES produces insufficient total cloud cover and liquid water amounts and, consequently, greatly underestimates c...
متن کاملSpatial monitoring of land surface temperature and solar radiation energy using remote sensing data and geo statistics (Case study: Lut desert)
Solar energy is receiving lots of attention because it is one of the cleanest, cheapest and most available energies in the world.but solar radiation in different parts is changing, thus, identifying appropriate locations for implementation of solar energy is necessary. Accordingly the aim of this study was to analyze the potential of solar radiation and land surface temperature on the Loot dese...
متن کاملInvestigation on the Climatic Parameters Fluctuation Using Data from the The European Centre for Medium-Range Weather Forecasts (Case study: Shirkouh Region - Yazd Province)
Any changes in the climate system affect on the access and management of natural resources such as water and soil. Temperature and precipitation are the key elements of climate for studying their trend can be important for atmospheric scientists, environmental managers and planners in the field of hydrology, agriculture, environment and so on. In this study, the trend of climate fluctuations wa...
متن کاملExperimental and Numerical Investigation of Air Temperature Distribution inside a Car under Solar Load Condition
In this work both experimental and numerical analysis are carried out to investigate the effect of solar radiation on the cabin air temperature of Maruti Suzuki Celerio car parked for 90 min under solar load condition. The experimental and numerical analysis encompasses on temperature increment of air at various locations ins...
متن کاملEstimating Daily Global Evapotranspiration Using Penman-Monteith Equation and Remotely Sensed Land Surface Temperature
Daily evapotranspiration (ET) is modeled globally for the period 2000–2013 based on the Penman–Monteith equation with radiation and vapor pressures derived using remotely sensed Land Surface Temperature (LST) from the MODerate resolution Imaging Spectroradiometer (MODIS) on the Aqua and Terra satellites. The ET for a given land area is based on four surface conditions: wet/dry and vegetated/non...
متن کامل